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Exactly Solvable Model of Quantum Diffusion
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We study the transport property of diffusion in a finite translationally invari-
ant quantum subsystem described by a tight-binding Hamiltonian with a sin-
gle energy band. The subsystem interacts with its environment by a coupling
expressed in terms of correlation functions which are delta-correlated in space
and time. For weak coupling, the time evolution of the subsystem density
matrix is ruled by a quantum master equation of Lindblad type. Thanks to the
invariance under spatial translations, we can apply the Bloch theorem to the
subsystem density matrix and exactly diagonalize the time evolution superop-
erator to obtain the complete spectrum of its eigenvalues, which fully describe
the relaxation to equilibrium. Above a critical coupling which is inversely pro-
portional to the size of the subsystem, the spectrum at given wave number con-
tains an isolated eigenvalue describing diffusion. The other eigenvalues rule the
decay of the populations and quantum coherences with decay rates which are
proportional to the intensity of the environmental noise. An analytical expres-
sion is obtained for the dispersion relation of diffusion. The diffusion coef-
ficient is proportional to the square of the width of the energy band and
inversely proportional to the intensity of the environmental noise because diffu-
sion results from the perturbation of quantum tunneling by the environmental
fluctuations in this model. Diffusion disappears below the critical coupling.

KEY WORDS: Quantum transport; environment-induced diffusion; quantum
decoherence; quantum master equation; translational invariance; Bloch theo-
rem for density matrices; Liouvillian resonances.

1. INTRODUCTION

The diffusion of particles in a condensed phase is a fundamental trans-
port process which is ubiquitous in natural phenomena. Since the pio-
neering work by Einstein in 1905, it is known that diffusion is related to
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conduction or mobility. Although diffusion has been extensively studied in
classical systems, much less is known in quantum systems where the quan-
tum effects can deeply affect the transport properties at low temperature.
Yet, the theoretical understanding of quantum diffusion remains sparse
and difficult because diffusion is an incoherent process very remote from
the very coherent basic quantum dynamics.

The purpose of the present paper is to study a simple model of quan-
tum diffusion in a system which possesses the property of being invari-
ant under spatial translations. This property is a fundamental feature
of systems sustaining transport processes such as diffusion or conduc-
tion. The translational invariance is at the basis of the early studies of
electronic conduction based on the Boltzmann–Lorentz equation,(1) and
is also important in the polaron model.(2) Quantum diffusion has also
been studied in systems with dynamic disorder.(3,4) On the other hand,
motivated by the problem of dissipation in quantum macroscopic phe-
nomena, models of quantum Brownian motion have been proposed and
studied since the 1980s.(5) In such models, one degree of freedom has a
diffusive-like motion in an external potential which breaks the transla-
tional invariance. These models were later extended to the study of trans-
port in spatially periodic potentials.(6–14) In these studies, attention was
focused essentially on diffusion. In the present study, we intend to study
the complete set of the relaxation modes in the system by obtaining all
the eigenvalues of the time evolution superoperator. The complete diag-
onalization of the time evolution superoperator is accomplished by fully
exploiting the translational invariance with Bloch’s theorem applied to the
density matrices. This allows us to introduce in a rigorous way a wave
number and to obtain the eigenvalues which gives the Liouvillian reso-
nances as functions of the wave number. These resonances provides us
with the characteristic times of the relaxation toward the thermodynamic
equilibrium. The hydrodynamic mode of diffusion is one among the eigen-
states associated with the Liouvillian resonances. This mode controls the
long-time dynamics of the system. The other modes control the shorter
time scales and are associated with decoherence. In the quantum model
here studied, analytical expressions can be obtained in this way for the dis-
persion relation of diffusion and the other resonances.

We notice that translationally invariant models without coupling to
the environment have recently been studied in such models as quan-
tum graphs(15) quantum multibaker maps,(16) as well as quantum periodic
Lorentz gases.(17) These models describe the motion of a quantum parti-
cle in a spatially periodic potential. The energy spectrum of the particle
is composed of energy bands so that the motion is ballistic on long-time
scales. If the energy of the particle is distributed over many energy bands,
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the motion becomes semiclassical and diffusion may manifest itself as a
transient behavior before the long-time ballistic motion. This has been
remarkably demonstrated for the quantum multibaker map in ref. 16. In
order for diffusion to persist up to arbitrarily long times, the quantum sys-
tem must contain infinitely many degrees of freedom, for instance, by the
coupling with some environment in the subsystem-plus-reservoir approach
we adopt in the present paper.

The plan of the paper is the following. Our translationally invariant
model is defined in Sec. 2 by weakly coupling a one-dimensional tight-
binding Hamiltonian to a delta-correlated environment. The dynamics of
this system is ruled by a Redfield quantum master equation.(18–22) The
long-time evolution of the model can be studied in terms of the eigen-
values and the associated eigenstates of the Redfield superoperator, as
explained in Sec. 3. The eigenvalue problem is exactly solved for a finite
chain in Sec. 4. The advantage of first taking a finite chain is that the
total number of eigenvalues is known and we do not miss the part of the
spectrum controlling decoherence. The Liouvillian spectrum of the infinite
chain is thereafter obtained in Sec. 5 by taking the limit N →∞. Conclu-
sions are drawn in Sec. 6.

2. DEFINING THE SYSTEM

2.1. Subsystem

We consider a one-dimensional subsystem described by the following
Hamiltonian

Ĥs =




E0 −A 0 0 . . . 0 −A

−A E0 −A 0 . . . 0 0
0 −A E0 −A 0 0
...

. . .
. . .

. . .
...

0 0 −A E0 −A 0
0 0 . . . 0 −A E0 −A

−A 0 . . . 0 0 −A E0




N×N

(1)

represented in the site basis |l〉, where l takes the values l =0,1, . . . ,N −1.
N is the length of the chain. We have here chosen periodic (Born–
van Karman) boundary conditions. This so-called tight-binding or Hüc-
kel Hamiltonian describes a process of quantum tunneling from site to site
and is invariant under spatial translations.
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The stationary Schrödinger equation of the tight-binding Hamiltonian
is given by

Ĥs|k〉= εk|k〉, (2)

where the eigenvalues are

εk =E0 −2A cos k
2π

N
(3)

and the eigenvectors

〈l|k〉= 1√
N

eilk 2π
N , (4)

with k = 0,1, . . . ,N − 1. Accordingly, the Hamiltonian (1) has an energy
spectrum with a single energy band of width 4A and the motion of the
particle would be purely ballistic without coupling to a fluctuating envi-
ronment.

2.2. Coupling to the Environment

Now, we suppose that the subsystem is coupled to a large environ-
ment. The Hamiltonian of the total system composed of the one-dimen-
sional chain and its environment is given by

Ĥtot = Ĥs + Ĥb +λ
∑

l

Ŝl B̂l , (5)

where Ĥb is the environment Hamiltonian, Ŝl the subsystem coupling
operators, B̂l the environment coupling operators, and λ the coupling
parameter which measures the intensity of the interaction between the
subsystem and its environment.

The dynamics of the total system is described by the von Neumann
equation

dρ̂tot(t)

dt
= ˆ̂Ltotρ̂tot(t)=−i[Ĥtot, ρ̂tot(t)], (6)

where ˆ̂Ltot is the Liouvillian superoperator of the total system. We adopt
the convention that –h = 1. The reduced dynamics for the density matrix
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ρ̂(t) = Trbρ̂tot(t) of the subsystem is known to obey a Redfield quantum
master equation for weak coupling to the environment.(18–22) This equa-
tion can be systematically derived from the complete von Neumann equa-
tion for the total system (6) by second-order perturbation theory so that

dρ̂(t)

dt
=Trb

ˆ̂Ltotρ̂tot(t)
λ�1= ˆ̂LRed(t)ρ̂(t)+O(λ3). (7)

On time scales longer than the correlation time of the environment, the
Redfield quantum master equation is Markovian and reads

dρ̂

dt
= ˆ̂LRedρ̂

= −i[Ĥs, ρ̂]+λ2
∑

l

(T̂l ρ̂Ŝl

+Ŝ
†
l ρ̂T̂

†
l − Ŝl T̂l ρ̂ − ρ̂T̂

†
l Ŝ

†
l )+O(λ3), (8)

where ˆ̂LRed is the so-called Redfield superoperator and where

T̂l ≡
∑
l′

∫ ∞

0
dτ Cll′(τ ) e−iĤsτ Ŝl′ e

iĤsτ . (9)

The correlation function of the environment which contains all the neces-
sary information to describe the coupling of the subsystem to its environ-
ment is given by

Cll′(τ )=Trbρ̂
eq
b eiĤbτ B̂le

−iĤbτ B̂l′ (10)

where ρ̂
eq
b is the canonical equilibrium state of the environment.

The interaction of the subsystem with its environment is expressed in
terms of the subsystem coupling operators which are projection operators
on the site basis

〈l|Ŝl′′ |l′〉= δll′ δll′′ . (11)

They take the unit value if the particle is located on the site l′′ and zero
otherwise. These operators have the properties:

Ŝn
l = Ŝl , (12)
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for n=2,3, ... and
∑

l

Ŝl = Î . (13)

We now need to specify the environment operators by the choice of
the environment correlation functions. We make two assumptions:

Assumption 1: The environment dynamics has a very fast evolution
compared with the subsystem dynamics. Therefore, the environment cor-
relation functions decay in time so fast with respect to the characteristic
time scales of the subsystem evolution, that they can be assumed to be
Dirac delta distributions in time.

Assumption 2: The environment has very short range spatial cor-
relations, much shorter than the distance between two adjacent sites of
the subsystem. Accordingly, the environment correlation functions decay
in space so fast that they can be assumed to be given by Kronecker delta
in space.

These two assumptions mean that each of the environmental fluctuations
at the different subsystem sites are statistically independent. The environ-
ment correlation functions are thus given by

Cll′(τ )=2Qδ(τ) δll′ , (14)

where Q is a real number. The operators (9) in the Redfield equation (8)
therefore become

T̂l =QŜl. (15)

It has been shown in ref. 23 that the form taken by the operator (15) can
be physically justified when τth � τb � τs, where τth = 1/kBT is the ther-
mal time, τb the correlation time of the environment or bath, and τs the
subsystem characteristic time.

Because of the fast decay of the temporal and the spatial correla-
tions (14) and the properties of the subsystem coupling operators (11), the
Redfield equation we have to solve takes the form

dρ̂

dt
= ˆ̂LRedρ̂

= −i[Ĥs, ρ̂]

+λ2Q
∑

l

(2Ŝl ρ̂Ŝl − Ŝ2
l ρ̂ − ρ̂Ŝ2

l )+O(λ3). (16)
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It can easily be verified by projecting this equation onto the site basis that
it is translationally invariant (shifting all the site indices appearing in the
projected equation by a constant does not modify the equation). Further-
more, this equation preserves the complete positivity of the density matrix
because it has the Lindblad form(24) which is the result of a coupling with
delta correlation functions.(21) It should also be mentioned that Eq. (16)
can be directly derived from the complete von Neumann equation for the
total system (6) in the singular coupling limit.(25,26)

3. DIAGONALIZING THE REDFIELD SUPEROPERATOR

The eigenvalues sν and associated eigenstates ρ̂ν of the Redfield su-
peroperator are defined by

ˆ̂LRed ρ̂ν = sν ρ̂ν, (17)

where ν is a set of parameters labeling the eigenstates. Because the Redfield
superoperator is not anti-Hermitian, its eigenvalues can be complex numbers
with a nonzero real part. The eigenvalue problem of the Redfield superopera-
tor is important because the time evolution of the quantum master equation
can then be decomposed onto the basis of the eigenstates as

ρ̂(t)= e
ˆ̂LRedt ρ̂(0)=

N2∑
ν=1

cν(0) esν t ρ̂ν . (18)

The dynamics is therefore given by a linear superposition of exponential or
oscillatory exponential functions. Since the reduced density matrix of the
subsystem has N2 elements, there is a total of N2 eigenvalues and associ-
ated eigenstates.

3.1. Bloch Theorem

Since the system is invariant under spatial translations, we can
apply the Bloch theorem to the eigenstates of the Redfield superopera-
tor. Thanks to this theorem, the state space of the superoperator can be
decomposed into independent superoperators acting onto decoupled sec-
tors associated with a given Bloch number, also called wave number.(1)

We define the superoperator ˆ̂T a of the spatial translation by a sites
along the system (a is an integer) as

(
ˆ̂T aρ

ν)ll′ =ρν
l+a,l′+a, (19)
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where we use the notation 〈l|ρ̂|l′〉 = ρll′ . This superoperator has the group
property

ˆ̂T a
ˆ̂T a′ = ˆ̂T a′ ˆ̂T a = ˆ̂T a+a′ . (20)

Because of the translational symmetry of the system, the translation
superoperators commute with the Redfield superoperator

[
ˆ̂T a,

ˆ̂LRed

]
=0. (21)

Therefore, the Redfield superoperator as well as the translation superoper-
ators have a basis of common eigenstates. If τ(a) denotes the eigenvalues
of the translation superoperator, we have that

ˆ̂T a ρ̂ν = τ(a) ρ̂ν, (22)

where, because of the unitarity of ˆ̂T a ,

|τ(a)|2 =1. (23)

Equation (20) implies

τ(a +a′)= τ(a) τ (a′). (24)

Because of Eqs. (23) and (24), we find that

τ(a)= eiqa, (25)

where q is the Bloch number or wave number, whereupon we get

ρν
l+a,l′+a = eiqaρν

ll′ . (26)

A useful consequence is that

ρν
ll′ = eiqlρν

0,l′−l . (27)
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In order to determine the allowed values of the Bloch number, we write
by using Eq. (4) that

ρν
ll′ =

1
N

∑
k,k′

〈k|ρ̂ν |k′〉ei(lk−l′k′) 2π
N (28)

and

ρν
l+1,l′+1 = 1

N

∑
k,k′

〈k|ρ̂ν |k′〉ei(lk−l′k′) 2π
N ei(k−k′) 2π

N . (29)

Because of Eq. (26), we also have

ρν
l+1,l′+1 = eiq ρν

ll′ . (30)

Multiplying both sides of Eqs. (29) and (30) by 〈l′|k′′′〉〈k′′|l〉, taking the
sum

∑
l,l′ of it, and identifying them, we obtain

eiq〈k|ρ̂ν |k′〉= ei(k−k′) 2π
N 〈k|ρ̂ν |k′〉. (31)

We can now notice that if q 	= (k −k′) 2π
N

, then 〈k|ρ̂ν |k′〉=0. Finally, using
the periodicity

ρν
l+N,l′ = ρν

ll′ , (32)

ρν
l,l′+N = ρν

ll′ , (33)

and Eq. (26), we find that the Bloch number takes the values

q = j
2π

N
, where j =0,1, . . . ,N −1. (34)

Consequently, the Redfield superoperator can be block-diagonalized into
N independent blocks, which each contains N eigenvalues as we shall see
in the following.
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3.2. Simplifying the Problem

The eigenvalue problem of the Redfield superoperator can be formu-
lated in each sector labeled by a given wave number q. For this purpose,
Eq. (17) with the explicit expression (16) of the Redfield superoperator is
projected onto the site basis to get

sνρ
ν
ll′ = −iA

(
−ρν

l−1,l′ −ρν
l+1,l′ +ρν

l,l′−1 +ρν
l,l′+1

)

+2λ2Q(δll′ −1) ρν
ll′ . (35)

Using Eq. (27) and replacing l′ − l by l, we have

(
sν +2Qλ2

)
ρν

0l = 2A
(

sin
q

2

)(
e−i

q
2 ρν

0,l+1 − ei
q
2 ρν

0,l−1

)

+2Qλ2ρν
00 δ0l . (36)

Making the change of variable

ρν
0l = i−lei

q
2 lfl, (37)

we obtain the simpler eigenvalue equation

µνfl = δ0lfl − iβ(fl−1 +fl+1), (38)

where

µν = sν

2Qλ2
+1, (39)

and

β = A

Qλ2
sin

q

2
. (40)

4. FINITE CHAIN

4.1. The Eigenvalue Problem

The expression (38) can be written in matrix form without the index
ν to simplify the notation,

µ 
f = Ŵ 
f , (41)
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where µ denotes the eigenvalue, 
f = (f0, . . . , fN−1) the eigenvector of size
N , and Ŵ the following N ×N matrix




1 −iβ −iβi−NeiN
q
2

−iβ 0 −iβ

−iβ 0 −iβ

. . .
. . .

. . .

−iβ 0 −iβ

−iβ 0 −iβ

−iβiNe−iN
q
2 −iβ 0




(42)

We look for eigenstates of the form

fl =Aeiθl +Be−iθ l . (43)

Solving Eq. (41) with (43) gives

• for 0<l <N −1:

µ=−2i β cos θ, (44)

• for l =0:

(1−µ)(A+B)− iβ(Aeiθ +Be−iθ )

−iβi−NeiN
q
2 (Aeiθ(N−1) +Be−iθ(N−1))=0, (45)

• for l =N −1:

AeiθN +Be−iθN − iNe−iN
q
2 (A+B)=0. (46)

Solving the homogeneous linear system of Eqs. (45) and (46) and replac-
ing µ by (44), one gets the characteristic equation

2iβ sin θ [R(q)− cos θN ]= sin θN, (47)
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with

R(q)= 1
2

(
iNe−iN

q
2 + i−NeiN

q
2

)
. (48)

Using Eq. (34), we find:

for N odd : R(qj )=0, (49)

for N =4I : R(qj )= (−1)j , (50)

for N =4I +2 : R(qj )=−(−1)j, (51)

with I integer. From now on, we shall speak of even (respectively odd) q,
if q corresponds to an even (respectively odd) integer j in Eq. (34). There-
fore, the characteristic equation (47) becomes

• for N odd:

2iβ sin θ =− tan θN; (52)

• for N =4I and q even or for N =4I +2 and q odd: either

2iβ sin θ = cotan
θN

2
, (53)

or

cos θN = 1 ; (54)

• for N =4I and q odd or for N =4I +2 and q even: either

2iβ sin θ = − tan
θN

2
, (55)

or

cos θN = −1. (56)

We solve Eqs. (52)–(56) as follows.
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4.2. The Diffusive Eigenvalue µ(1)

We first look for an eigenvalue µ which is real and should correspond
to a monotonic exponential decay. With this goal, we suppose that the
angle θ is complex

θ = ξ + iη, (57)

so that the eigenvalue (44) becomes

µ=−2iβ cos θ =−2β sin ξ sinh η−2iβ cos ξ cosh η. (58)

This eigenvalue is real under the condition that cos ξ =0 which is satisfied
for

ξ =−π

2
, (59)

in which case

µ=−2β sinh η. (60)

We notice that the condition cos ξ =0 is also satisfied for ξ = π
2 but it can

be shown that this other case leads to the same eigenvalue as (59). If we
introduce the conditions (57) and (59) in Eqs. (52), (53), and (55), we get

• for N odd:

2β cosh η= coth Nη ; (61)

• for N =4I and q even or for N =4I +2 and q odd:

2β cosh η = coth
Nη

2
; (62)

• for N =4I and q odd or for N =4I +2 and q even:

2β cosh η = tanh
Nη

2
. (63)
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In the limit N →∞, the right-hand side of these equations tends to
unity if a nonvanishing solution η 	=0 exists. In this limit, this solution is
thus given by

η0 = arccosh
1

2β
, (64)

which exists only if β � 1
2 . Because

sinh η0 =
√(

1
2β

)2

−1, (65)

the corresponding eigenvalue should be

µ0 =
√

1− (2β)2. (66)

However, for a finite chain with N < ∞, we expect a correction δη

to the solution η=η0 + δη. Replacing this correction in Eqs. (61)–(63), we
obtain by Taylor expansion that

• for N odd:

δη�2
e
−2Narccosh 1

2β

√
1− (2β)2

; (67)

• for N =4I and q even or for N =4I +2 and q odd:

δη�2
e
−Narccosh 1

2β

√
1− (2β)2

; (68)

• for N =4I and q odd or for N =4I +2 and q even:

δη�−2
e
−Narccosh 1

2β

√
1− (2β)2

; (69)
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up to corrections of O(δη2). Using the expression (60), we finally obtain
the eigenvalue

µ(1) = 2β sinh η0 +2β cosh η0 δη+O(δη2)

=
√

1− (2β)2 + δη+O(δη2) , (70)

where δη is, respectively, given by Eqs. (67)–(69). Accordingly, the correc-
tion δη to the eigenvalue decreases exponentially fast with the size N of
the chain.

Using Eqs. (39) and (40), we finally obtain the eigenvalue

s(1) = 2Qλ2(µ(1) −1)

= 2Qλ2

√
1−

(
2A

Qλ2
sin

q

2

)2

−2Qλ2 +O(δη). (71)

The eigenvalue s(1) =0 corresponding to a vanishing wave number q =0 is
always in the spectrum of the Redfield superoperator. The associated ei-
genstate describes the stationary equilibrium state. At low wave numbers
q,β →0, we recover the dispersion relation of diffusion

s(1) =−Dq2 +O(q4) , (72)

with the diffusion coefficient

D = A2

Qλ2
, (73)

which justifies calling µ(1) or s(1) the diffusive eigenvalue.
We notice that the diffusive eigenvalue no longer exists beyond the

critical value βc = 1
2 . Since the matrix (42) has a total of N eigenvalues,

we expect further nondiffusive eigenvalues in a number of N −1 for β < 1
2

and N for β > 1
2 , as confirmed in the following subsections.

4.3. The Eigenvalues µ(2)

Beside the diffusive eigenvalue, we expect eigenvalues corresponding
to the chain-like structure of the matrix (42). To obtain these eigenvalues,
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we pose tan χ = 2iβ sin θ so that Eqs. (52), (53), and (55) can be written,
respectively

sin(θN +χ)=0, (74)

cos
(

θN

2
+χ

)
=0, (75)

sin
(

θN

2
+χ

)
=0. (76)

Therefore, we obtain

i (nπ − θN) = arctanh(−2β sin θ), (77)

i

(
nπ + π

2
− θN

2

)
= arctanh(−2β sin θ) , (78)

i

(
nπ − θN

2

)
= arctanh(−2β sin θ). (79)

We now expand arctanh(−2β sin θ) around β =0:

arctanh(−2β sin θ)
β→0= −2β sin θ − 8

3
β3 sin3 θ +O(β5). (80)

If β =0, the solutions of Eqs. (77)–(79) are, respectively, given by

θ0 = nπ

N
, where n=1,2, . . . ,N −1, (81)

θ0 = (2n+1)π

N
, where n=0,1, . . . ,

N

2
−1, (82)

θ0 = 2nπ

N
, where n=1,2, . . . ,

N

2
−1. (83)

Notice that n=0 is rejected in Eqs. (81) and (83). It is due to the fact that
θ = 0 does not correspond to an eigenvector because it can be seen that
fl =A+B 	=0 in Eq. (43) cannot be an eigenvector of Eq. (42).

Using the expansion (80) in Eqs. (77)–(79) with θ = θ0 + δθ , we find

δθ
β→0= − i2β

M
sin θ0 − i8β3

3M
sin3 θ0

+O

(
i
β5

M

)
+O

(
β2

M2

)
, (84)
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where M =N for Eq. (77) and M = N
2 for Eqs. (78) and (79). The eigen-

value (44) is now given by the expansion

µ = −2iβ cos(θ0 + δθ)

δθ→0= −2iβ cos θ0 +2iβ sin θ0 δθ

+iβ cos θ0 δθ2 +O(δθ3). (85)

Using Eq. (84) in (85) gives

µ(2) β→0= −2iβ cos θ0 +O

(
i
β3

M2

)

+4β2

M
sin2 θ0 + 16β4

3M
sin4 θ0 +O

(
β6

M

)
.

(86)

Consequently, we have

• for N odd, using Eq. (86) with (81):

µ(2) β→0= −2iβ cos
nπ

N
+ 4β2

N
sin2 nπ

N
+ 16β4

3N
sin4 nπ

N
,

where n=1,2, . . . ,N −1 ; (87)

• for N =4I and q even or for N =4I +2 and q odd, using Eq. (86)

with (82):

µ(2) β→0= −2iβ cos
(2n+1)π

N

+8β2

N
sin2 (2n+1)π

N
+ 32β4

3N
sin4 (2n+1)π

N
,

where n=0,1, . . . ,
N

2
−1 ; (88)

• for N =4I and q odd or for N =4I +2 and q even, using Eq. (86)

with (83):

µ(2) β→0= −2iβ cos
2nπ

N
+ 8β2

N
sin2 2nπ

N
+ 32β4

3N
sin4 2nπ

N
,

where n=1,2, . . . ,
N

2
−1. (89)
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4.4. The Eigenvalues µ(3)

The solutions of Eq. (54) are simply given by

θ = 2nπ

N
, where n=1,2, . . . ,

N

2
−1 . (90)

We reject n=0 and n= N
2 because the corresponding eigenvector does not

exist in these cases. Similarly, the solutions of Eq. (56) are given by

θ = (2n+1)π

N
, where n=0,1, . . . ,

N

2
−1 . (91)

Consequently, we have the further eigenvalues:

• for N =4I and q even or for N =4I +2 and q odd, using Eq. (44)

with (90):

µ(3) = −2iβ cos
(

2nπ

N

)
, where n=1,2, . . . ,

N

2
−1 ;

(92)

• for N =4I and q odd or for N =4I +2 and q even, using Eq. (44)

with (91):

µ(3) = −2iβ cos
(

(2n+1)π

N

)
,

where n=0,1, . . . ,
N

2
−1. (93)

4.5. The Eigenvalues µ(4)

An important observation is that, for β < 1
2 , the expansion (80) which

implies 2β sin θ < 1 is satisfied everywhere, i.e., for all the values of θ and
therefore for all the eigenvalues. However, for β > 1

2 , the Taylor expansion
around β = 0 in Eq. (80) is only valid if 2β sin θ < 1. Therefore, a transi-
tion zone exists around sin θ � 1/(2β). According to Eq. (44), this transi-
tion corresponds to the critical value of the eigenvalue given by

µc = ±i

√
(2β)2 −1. (94)
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Therefore, for β > 1
2 , the expansion (80) around β =0 is only valid if |µ|>

|µc|. For |µ|< |µc|, we should instead consider the asymptotic expansion
of arctanh(−2β sin θ) around β =∞:

arctanh(−2β sin θ)
β→∞= i

π

2
− 1

2β sin θ
− 1

24β3 sin3 θ

− 1

160β5 sin5 θ
+O

(
1
β7

)
, (95)

which leads to another family of eigenvalues existing for β > 1
2 .

If β →∞, the solutions of Eqs. (77)–(79) are, respectively, given by

θ0 = (n+ 1
2 )π

N
, where n=0,1, . . . ,N −1 , (96)

θ0 = 2nπ

N
, where n=1,2, . . . ,

N

2
−1 , (97)

θ0 = (2n+1)π

N
, where n=0,1, . . . ,

N

2
−1. (98)

Because of the condition |µ|< |µc| with the critical values (94), we should
only consider the angles in the interval θ0,c <θ0 <π − θ0,c with

θ0,c = arcsin
1

2β
, (99)

so that the integer n in Eqs. (96)–(98) is restricted to take the intermediate
values nmin <n<nmax which do not reach the extreme values.

Using the expansion (95) in Eqs. (77)–(79) with θ = θ0 + δθ , we find

δθ
β→∞= − i

2βM sin θ0
− i

24β3M sin3 θ0
− i

160β5M sin5 θ0

+O
(

i

β7M

)
+O

(
1

β2M2

)
, (100)

where M =N for Eq. (77) and M = N
2 for Eqs. (78) and (79).

Using Eq. (100) in (85) gives

µ(4) β→∞= −2iβ cos θ0 + 1
M

(
1+ 1

12β2 sin2 θ0

+ 1

80β4 sin4 θ0

)
+O

(
1

β6M

)
+O

(
i

βM2

)
.

(101)
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Consequently, we have

• for N odd, using Eq. (101) with (96):

µ(4) β→∞= −2iβ cos
(n+ 1

2 )π

N
+ 1

N


1+ 1

12β2 sin2 (n+ 1
2 )π

N

+ 1

80β4 sin4 (n+ 1
2 )π

N


 ,

where n=0,1, . . . ,N −1 ; (102)

• for N =4I and q even or for N =4I +2 and q odd, using Eq. (101)

with (97):

µ(4) β→∞= −2iβ cos
2nπ

N

+ 2
N

(
1+ 1

12β2 sin2 2nπ
N

+ 1

80β4 sin4 2nπ
N

)
,

where n=1,2, . . . ,
N

2
−1 ; (103)

• for N =4I and q odd or for N =4I +2 and q even, using Eq. (101)
with (98):

µ(4) β→∞= −2iβ cos
(2n+1)π

N

+ 2
N

(
1+ 1

12β2 sin2 (2n+1)π
N

+ 1

80β4 sin4 (2n+1)π
N

)
,

where n=0,1, . . . ,
N

2
−1 ; (104)

with the aforementioned restriction on the values of the integer n.
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4.6. The Eigenvalues µ(5)

For N = 4I and q even or N = 4I + 2 and q odd, two special eigen-
values exist in the limit β → ∞ around θ0 = 0 and θ0 = π . They can be
obtained by taking θ =θ0 + δθ and directly solving Eq. (53) to get in both
cases

δθ2 β→∞= 1
iβN

+O
(

1
β2

)
. (105)

Inserting in Eq. (85), we obtain

µ(5) β→∞= ∓2iβ + 1
N

+O
(

1
β

)
. (106)

4.7. Description of the Spectrum

Rewriting the eigenvalues (44) of the Redfield superoperator with
their explicit dependence in terms of Eq. (40), we get

µν =µqθ =−2iβ cos θ =−2i
A

Qλ2

(
sin

q

2

)
cos θ , (107)

where ν can take N2 different values because q and θ take N values each.
Remembering that according to Eq. (39)

sν = sqθ =2Qλ2(µqθ −1), (108)

we conclude that we have found in this section all the eigenvalues of the
Redfield superoperator. We list them in Tables I and II according to the
parameter regime in which they hold.

We now discuss the main features of the spectrum when the differ-
ent physical parameters are varied. This discussion is based on our analyti-
cal results for the eigenvalues and on the comparison between these results
and the eigenvalues obtained by numerical diagonalization of the Redfield
superoperator. Since the eigenvalues µqθ are related to the Redfield super-
operator eigenvalues sqθ by Eq. (108), we notice that all the eigenvalues
of the complete spectrum always satisfy 0 � Re µqθ � 1 or, equivalently,
−2Qλ2 � Re sqθ � 0. The imaginary part of sqθ is simply proportional by
a factor 2Qλ2 to the imaginary part of µqθ .
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We start by studying the N eigenvalues µqθ obtained by fixing the
wave number q (even or odd) and varying θ . For given physical param-
eters (A, λ, Q, N ), fixing q is equivalent to fixing β.

For β < 1
2 , the analytical expressions of the eigenvalues which concern

us are summarized in Table I. Two families of eigenvalues (µ(1) and µ(2))
enter in the discussion for N odd, and three families (µ(1), µ(2), and µ(3)),
for N even. The numerical eigenvalues are plotted in Figs. 1(a), 2(a), and
3(a) and are in very good agreement with the analytical results. The sole
diffusive eigenvalue µ(1) has a real part and no imaginary part. The N −1
other eigenvalues, either belongs to the µ(2) family for N odd or to the
µ(2) and µ(3) families for N even. The eigenvalues µ(2) and µ(3) have an
imaginary part which extends from −2β to 2β and they generate oscilla-
tions in the dynamics. The real part of the µ(2) eigenvalues is small and
tends to zero in the large N limit. The real part of the µ(3) eigenvalues is
always zero.

For β > 1
2 , the diffusive eigenvalue µ(1) has disappeared after merging

with the other eigenvalues and the situation is slightly more complicated.
The situation for a moderate value of β > 1

2 is depicted in Figs. 1(b), 2(b),
and 3(b) while the analytical expressions of the eigenvalues are given in
Table II. Since µ(1) no longer exists, we have the two families of eigen-
values µ(2) and µ(4) if N is odd, and the three families µ(2), µ(3) and µ(4)

if N is even. Two regions of the spectrum have to be distinguished. The
eigenvalues µ(2) exist in the region where |µ|> |µc| while the eigenvalues
µ(4) exist in the region where |µ|< |µc|. We observe that the extra family
of eigenvalues µ(4) has appeared because of the collision with the diffusive
eigenvalue µ(1). We can see in Figs. 1(b), 2(b), and 3(b) that the analytical
results of Table II reproduce very well the eigenvalues obtained by numer-
ical diagonalization in the two regions. Here again, the number of eigen-
values is equal to N for a given wave number q, the imaginary part of the
eigenvalues extends from −2β to 2β, and the real parts of all eigenvalues
tends to zero in the large N limit.

A special situation occurs when β > 1
2 is increased to large values.

This situation is depicted in Figs. 1(c), 2(c), and 3(c). The situation is sim-
ilar to the previous one but the region |µ|> |µc| has disappeared so that
the family of eigenvalues µ(2) corresponding to the expansion β → 0 no
longer exists. For N odd and for N even with q odd, these eigenvalues
are replaced by the eigenvalues µ(4). For N even and q even, we find the
two eigenvalues µ(5) beside the family of eigenvalues µ(4). The agreement
between the analytical and numerical results is very good here also. As
before, the imaginary part of all these eigenvalues extends from −2iβ to
2iβ and their real parts tends to zero in the large N limit.



Exactly Solvable Model of Quantum Diffusion 485

T
a

b
le

I.
F
o

r
W

a
v
e

N
u

m
b

e
rs

q
C

o
rr

e
s
p

o
n

d
in

g
to

β
<

1 2

N
od

d
N

=
4I

an
d

q
ev

en
or

N
=

4I
+

2
an

d
q

od
d

N
=

4I
an

d
q

od
d

or
N

=
4I

+
2

an
d

q
ev

en

µ
(1

)
=
√ 1

−
(2

β
)2

+
2

e
−2

N
ar

cc
os

h
1/

(2
β
)

√ 1−
(2

β
)2

µ
(1

)
=
√ 1

−
(2

β
)2

+
2

e
−N

ar
cc

os
h

1/
(2

β
)

√ 1−
(2

β
)2

µ
(1

)
=
√ 1

−
(2

β
)2

−
2

e
−N

ar
cc

os
h

1/
(2

β
)

√ 1−
(2

β
)2

µ
(2

)
β
→

0 =
−2

iβ
co

s
n
π N

µ
(2

)
β
→

0 =
−2

iβ
co

s
(2

n
+1

)π
N

µ
(2

)
β
→

0 =
−2

iβ
co

s
2n

π
N

+
4β

2

N
si

n2
n
π N

+
8β

2

N
si

n2
(2

n
+1

)π
N

+
8β

2

N
si

n2
2n

π
N

+
16

β
4

3N
si

n4
n
π N

+
32

β
4

3N
si

n4
(2

n
+1

)π
N

+
32

β
4

3N
si

n4
2n

π
N

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

fo
r

n
=

1,
2,

..
.,

N
−

1
fo

r
n

=
0,

1,
..

.,
N 2

−
1

fo
r

n
=

1,
2,

..
.,

N 2
−

1

µ
(3

)
=

−2
iβ

co
s(

2n
π

N
)

µ
(3

)
=

−2
iβ

co
s(

(2
n
+1

)π
N

)

fo
r

n
=

1,
2,

..
.,

N 2
−

1
fo

r
n

=
0,

1,
..

.,
N 2

−
1

L
is

t
of

th
e

ei
ge

nv
al

ue
s

µ
q
θ

of
th

e
m

at
ri

x
(4

2)
gi

ve
n

by
E

q.
(1

07
).

T
he

se
ei

ge
nv

al
ue

s
ar

e
di

re
ct

ly
re

la
te

d
to

th
e

R
ed

fie
ld

su
pe

ro
pe

ra
to

r
ei

ge
nv

al
ue

s
by

E
q.

(1
08

).



486 Esposito and Gaspard

T
a

b
le

II
.

F
o

r
W

a
v
e

N
u

m
b

e
rs

q
C

o
rr

e
s
p

o
n

d
in

g
to

β
>

1 2

N
od

d
N

=
4I

an
d

q
ev

en
or

N
=

4I
+

2
an

d
q

od
d

N
=

4I
an

d
q

od
d

or
N

=
4I

+
2

an
d

q
ev

en

If
|µ

(4
)
|<

|µ
c|a

µ
(4

)
β
→

∞ =
−2

iβ
co

s
(n

+
1 2
)π

N
µ

(4
)
β
→

∞ =
−2

iβ
co

s
2n

π
N

µ
(4

)
β
→

∞ =
−2

iβ
co

s
(2

n
+1

)π
N

+
1 N
(1

+
1

12
β

2
si

n2
(n

+(
1/

2)
)π

N

+
2 N
(1

+
1

12
β

2
si

n2
2n

π
N

+
2 N
(1

+
1

12
β

2
si

n2
(2

n
+1

)π
N

+
1

32
β

4
si

n4
(n

+(
1/

2)
)π

N

)
+

1
32

β
4

si
n4

2n
π

N

)
+

1
32

β
4

si
n4

(2
n
+1

)π
N

)

+O
(

1
β

6
N

)
+

O
(

i

β
N

2
)

+O
(

1
β

6
N

)
+

O
(

i

β
N

2
)

+O
(

1
β

6
N

)
+

O
(

i

β
N

2
)

fo
r

n
m

in
<

n
<

n
m

ax
fo

r
n

m
in

<
n

<
n

m
ax

fo
r

n
m

in
<

n
<

n
m

ax

µ
(5

)
β
→

∞ =
∓2

iβ
+

1 N
+

O
(

1 β
)

If
|µ

(2
)
|>

|µ
c|a

µ
(2

)
β
→

0 =
−2

iβ
co

s
n
π N

µ
(2

)
β
→

0 =
−2

iβ
co

s
(2

n
+1

)π
N

µ
(2

)
β
→

0 =
−2

iβ
co

s
2n

π
N

+
4β

2

N
si

n2
n
π N

+
8β

2

N
si

n2
(2

n
+1

)π
N

+
8β

2

N
si

n2
2n

π
N

+
16

β
4

3N
si

n4
n
π N

+
32

β
4

3N
si

n4
(2

n
+1

)π
N

+
32

β
4

3N
si

n4
2n

π
N

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

+O
(

β
6

N
)
+

O
(

iβ
3

N
2
)

fo
r

n
=

1,
2,

..
.,

n
m

in
fo

r
n

=
0,

1,
..

.,
n

m
in

fo
r

n
=

1,
2,

..
.,

n
m

in

an
d

n
=

n
m

ax
,
..

.,
N

−
1

an
d

n
=

n
m

ax
,
..

.,
N 2

−
1

an
d

n
=

n
m

ax
,
..

.,
N 2

−
1

µ
(3

)
=

−2
iβ

co
s(

2n
π

N
)

µ
(3

)
=

−2
iβ

co
s(

(2
n
+1

)π
N

)

fo
r

n
=

1,
2,

..
.,

N 2
−

1
fo

r
n

=
0,

1,
..

.,
N 2

−
1

L
is

t
of

th
e

ei
ge

nv
al

ue
s

µ
q
θ

of
th

e
m

at
ri

x
(4

2)
gi

ve
n

by
E

q.
(1

07
).

T
he

se
ei

ge
nv

al
ue

s
ar

e
di

re
ct

ly
re

la
te

d
to

th
e

R
ed

fie
ld

su
pe

ro
pe

ra
to

r
ei

ge
nv

al
ue

s
by

E
q.

(1
08

).
a
µ

c
=

±i
√ (2

β
)2

−
1.



Exactly Solvable Model of Quantum Diffusion 487

0.5 0 0.5

Im m

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

m

m e
m(1)

m(2)

(a)

1

Im m

0

0.05

0.1

0.15

R
e

m 

me

m(2)

m(4)

mc

(b)

10

20 10

0

0.02

0.04

0.06

me

m(4)
(c)

Im m 

R
e

m

0 10 20

Fig. 1. Eigenvalue spectrum for N =21 and given q: (a) β =0.4, (b) β =0.7, and (c) β =10.
µe denotes the exact eigenvalues obtained by numerical diagonalization and µ(i) the eigenval-
ues of the different families given in Tables I and II.
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µc denotes the exact eigenvalues obtained by numerical diagonalization and µ(i) the eigenval-
ues of the different families given in Tables I and II.
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A global view of the complete spectrum of the N2 eigenvalues of the
Redfield superoperator is depicted in Fig. 4 by varying the wave number q

in a third dimension. Here, we only consider for simplicity the case where
N is odd. The relation between the wave number q and the parameter
β is given by Eq. (40). The wave number q varies in the first Brillouin
zone or, equivalently, in the interval 0 � q < 2π . We see in Fig. 4(a)
that the diffusive eigenvalues µ(1) exists for all the values of the wave
number in the case A

Qλ2 < 1
2 which implies β < 1

2 . However, if A

Qλ2 > 1
2 ,

the diffusive eigenvalue µ(1) disappears as expected for some values of
the wave number corresponding to β > 1

2 . This situation is observed in
Fig. 4(b).

For very large values of A

Qλ2 > 1
2 , the diffusive branch of the spec-

trum is reduced to the sole eigenvalue µ(1) at q = 0, as seen in Fig. 4(c).
In this case, diffusion has disappeared from the spectrum which only con-
tains eigenvalues associated with damped oscillatory behavior. The diffu-
sive branch can be supposed to have disappeared when its last nonzero
eigenvalue disappears in Eq. (71). Therefore, the diffusive branch disap-
pears when the value of β for the first nonzero eigenvalue corresponding
to q = 2π

N
is larger than the critical value βc = 1

2 . This happens when the
coupling parameter exceeds the critical value given by

λc =
√

2A

Q
sin

π

N

N>5�
√

2Aπ

QN
. (109)

This disappearance of the diffusion branch can be observed in Fig. 4(c).
We notice that the diffusive branch always exists in the infinite-system
limit (N →∞) in which case λc can be arbitrarily small.

We have described in this section the complete spectrum of the
Redfield superoperator for a finite chain. We now briefly indicate which
are the dynamical implications of these results.

4.8. From the Spectrum to the Dynamics

The linear decomposition (18) of the density matrix shows that the
modes which control the long-time dynamics correspond to the eigen-
values having the smallest absolute value of their real part. The eigen-
values with larger absolute value of their real part correspond to faster
modes which control the relaxation on shorter time scales. For systems
of finite size N , the long-time relaxation can be of two kinds. In the
case where λ < λc, the long-time relaxation is controlled by nondiffu-
sive modes and consists in complicated oscillations of different periods
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damped at rates Re s � −2Qλ2. This is due to the fact that, in this case,
all the eigenvalues of the spectrum have a similar real part and differ-
ent imaginary parts. This also indicates that the modes corresponding to
the relaxation of the coherences (modes with complex eigenvalues) and
of the populations (modes with real eigenvalues) decay on similar time
scales. In the other case where λ > λc, the long-time relaxation is con-
trolled by the diffusive mode. This relaxation is free of any oscillations
and is controlled by the rate s � −4π2A2/(Qλ2N2). This diffusive relax-
ation exclusively concerns the populations of the system. The other non-
diffusive modes describe the decoherence (as well as the relaxation of the
populations beside the part controlled by diffusion when 2A>Qλ2). These
modes decay at rates Re s �−2Qλ2, i.e., on much shorter time scales than
the diffusive mode. The dynamics of the finite N system is studied in detail
elsewhere.(23)

5. INFINITE CHAIN

The spectrum of the infinite chain coupled to its environment can be
obtained from the spectrum of the finite chain in the infinite-size limit
N →∞. The wave number q becomes a continuous parameter varying in
the first Brillouin zone −π �q <+π .

For given wave number, the diffusive eigenvalue µ(1) or s(1) given by
Eq. (71) remains isolated. Consequently, we obtain the result that the dis-
persion relation of diffusion is exactly given by the analytical expression

sq = 2

√
Q2λ4 −

(
2A sin

q

2

)2 −2Qλ2 =−Dq2 +O(q4). (110)

The diffusion coefficient

D = A2

Qλ2
, (111)

is proportional to the square of the parameter A of the tight-binding
Hamiltonian and inversely proportional to the parameter Qλ2 of the cou-
pling to the environment. The transport is therefore due to the tunneling
from site to site, which is hindered by the environmental fluctuations pro-
portional to Qλ2. It as been shown in ref. 23 that, for an Ohmic coupling
to the environment, the diffusion coefficient is inversely proportional to
the temperature. By using the Einstein relation between the diffusion coef-
ficient and the conductivity, this latter is therefore inversely proportional
to the square of the temperature.
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For 2A�Qλ2, the diffusive eigenvalue exists for all the values of the
wave number −π �q <+π , as seen in Fig. 5(a).

For 2A>Qλ2, the diffusive eigenvalue only exists for all the values of
the wavenumber in the range

−qc �q �+qc, with qc =2 arcsin
Qλ2

2A
. (112)

as seen in Fig. 5(b).
Beside the isolated diffusive eigenvalue, the spectrum at given wave

number q contains a continuous part obtained by the accumulation of the
eigenvalues µ(2), µ(3), µ(4), and µ(5) in the limit N →∞. Indeed, in this
limit, all these eigenvalues accumulate into a segment of straight line given
by

sqθ = −4iA
(

sin
q

2

)
cos θ −2Qλ2 , (113)

with 0 � θ � π and −π � q < +π [see Eqs. (107) and (108)]. This part
of the spectrum is also depicted in Fig. 5 and describes the time evolu-
tion of the quantum coherences which are damped at the exponential rate
Re sqθ =−2Qλ2 with possible oscillations due to their nonvanishing imag-
inary part Im sqθ .

The eigenvalue (110) can be considered as a Liouvillian resonance(27,28)

similar to the Pollicott–Ruelle resonances describing diffusion in classical
systems.(29,30)

6. CONCLUSIONS

In the present paper, we have studied an exactly solvable model of
simple translationally invariant subsystems interacting with their environ-
ment. The coupling to the environment is described by correlation func-
tions which are delta-correlated in space and time. The reduced dynamics
of the subsystem is described by a Redfield quantum master equation
which takes, for such environments, a Lindblad form. Thanks to the
invariance under spatial translations, we can apply the Bloch theorem to
the subsystem density matrix. In this way, we succeeded in getting analyti-
cal expressions for all the eigenvalues of the Redfield superoperator. These
eigenvalues control the time evolution of the subsystem and its relaxa-
tion to the thermodynamic equilibrium. Two kinds of eigenvalues were
obtained: the isolated eigenvalue (110) giving the dispersion relation of
diffusion along the one-dimensional subsystem and the other eigenvalues
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0

Res

Im s q

+π

−π

(a)

−2Qλ2

0

0

Res

Im s q

+π

−π

(b)

−2Qλ2

0

Fig. 5. Spectrum of the infinite chain coupled to its environment (a) in the regime 2A <

Qλ2 for A=0.4 and Qλ2 =1; (b) in the regime 2A>Qλ2 for A=0.6 and Qλ2 =1 where the
diffusive branch is limited to the wave numbers |q|<qc =1.97022..

(113) which describe the decay of the populations and quantum coher-
ences. The process of decoherence in the subsystem is controlled by these
latter eigenvalues (113).

The properties of the system depend on the length N of the one-
dimensional chain, on the width 4A of the energy band of the unperturbed
tight-binding Hamiltonian and on the intensity Q of the environmental
noise multiplied in the combination Qλ2 with the square of the coupling
parameter λ of perturbation theory.

We discovered that, for a finite chain, there are two regimes depend-
ing on the chain length N and the physical parameters A and Qλ2.

For a finite and small enough chain, there is a nondiffusive regime
characterized by a time evolution with oscillations damped by decay rates
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proportional to Qλ2. The oscillations are the time evolution of the quan-
tum coherences. This nondiffusive regime exists if the coupling parame-
ter is smaller than a critical value which is inversely proportional to the
square root of the chain size N : λ<λc =O(N− 1

2 ).
For larger chains, we are in the diffusive regime with a monotonic

decay on long times at a rate controlled by the diffusion coefficient. In this
regime, the slower relaxation mode relaxes exponentially in time with the
scaling t/(λN)2.

In the limit of an infinite chain N → ∞ and for non-vanishing cou-
pling parameter Qλ2, the nondiffusive regime disappears and the system
always diffuses.

The diffusion coefficient is proportional to the square of the width 4A

of the energy band and inversely proportional to the intensity Qλ2 of the
environmental noise. Accordingly, we are in the presence of a mechanism
of diffusion in which the quantum tunneling of the particle from site to
site is perturbed by the environmental fluctuations.

The eigenvalues of the Redfield superoperator obtained in the pres-
ent paper give the Liouvillian resonances at the second order of pertur-
bation theory. In this regard, the present work extends the results of refs.
27, 28 on the spin-boson model to systems with a translational symme-
try in space and capable of sustaining the transport property of diffusion
beside simple decay processes. These Liouvillian resonances are the quan-
tum analogues of the Pollicott–Ruelle resonances which have been studied
elsewhere for diffusion in classical systems.(29,30)
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